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and Forward Neural Networks
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Abstract

Using a theoretical result regarding the global stability of discrete dynamical
systems of lower triangular form, we establish convergence properties of forward
neural networks when the neuron response functions fail to be continuous.

1. Introduction

Global convergence to a stationary state is a fundamental property of a neural network.
When an input ~xI is received and regardless of the initial state ~x0 of the net, it is expected
that a stationary state ~xs is reached which depends only on ~xI , i.e. ~xs = ~xs(~xI).
The purpose of this note is to prove a theorem regarding discrete dynamical systems
of triangular type and to show that certain types of neural networks do have, as a
consequence of the theorem, the required global convergence, even in these cases in
which the neuron response functions fail to be continuous. The established result can
be viewed as a generalization of [5] where analogous theorems were obtained under the
more restrictive assumption of differentiability of the various neuron response functions.
The paper is divided into four parts. Part 2 contains some notations and definitions. In
part 3 we prove a global convergence result on triangular maps and in the last part we
apply it to a family of neural networks.

2. Notation and Definitions

Let X be a region in Rq. A function K : X → X defines a discrete dynamical system as
follows. Assume that the state at time n, ~xn is known. Then the state of the system at
time n+ 1, ~xn+1 is given by ~xn+1 = K(~xn). The orbit or trajectory of a point ~x0 ∈ X is
the sequence of states

O(~x0) = {~x0, ~x1 = K(~x0), . . . , ~xn+1 = K(~xn), . . .}.
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A point ~xs ∈ X is called a fixed point or stationary state of the dynamical system
governed by K if O(~xs) = {~xs}. A point ~a ∈ X is called a limit point of O(~x0) if there is
a subsequence of the orbit, which converges to ~a. We will use L(~x0) to denote the limit
points of O(~x0). When K is continuous and the orbit O(~x0) is bounded, it can be easily
verified that L(~x0) is non-empty, compact, and invariant under the action of K, i.e. [4]

K(L(~x0)) = L(~x0). (1)

A continuous map F : Rq → Rq of the form

F (x1, x2, . . . , xq) = (f1(x1), f2(x1, x2), . . . , fq(x1, x2, . . . , xq)) (2)

is called lower triangular. Upper triangular maps are defined in a similar manner. A
discrete model of a neural network (Hopfield model [2]) with q neurons is a dynamical
system in Rq of the form

~xn+1 = ~xn − C~xn + TF (~xn) + ~xI. (3)

The components of the vector ~xn+1 represent the energies of the various neurons of
the net at time n+1. C is a q×q diagonal matrix (leakage matrix) whose diagonal entries
are numbers in (0, 1) and it represents the energy lost by the system at each iteration. T
is the connectivity matrix, with its entries ti,j representing the strength of the connection
between neuron j and neuron i. ti,j > 0 means that neuron j acts in an excitatory
manner on neuron i while ti,j < 0 implies that its action is inhibitory.

F (~x) = F (x1, x2, . . . , xq) = (f1(x1), f2(x2), . . . , fq(xq))

is the neuron response function. F (~x) provides a threshold level below which the neurons
are inactive. Each fi is frequently taken in the form of a unit step function (0 for x < 0,
1 for x ≥ 0). Finally, xI represents the q-dimensional input vector, namely the signal
received by the net. A network modeled as in (3) is called forward if ti,j = 0 for j ≥ i.

The map associated with the system (3) is

K(~x) = (I −C)~x+ TF (~x) + ~xI, (4)

and the kth equation, k = 1, 2, . . .q of (3) assumes the form

xk,n+1 = (1− ck)xk,n + tk,1f1(x1,n) + · · ·+ tk,qfq(xq,n) + xkI. (5)

When a signal ~xI arrives it finds the net in a certain state ~x0 and the dynamical
process starts. The problem is to have convergence of all orbits of (3) to a unique
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fixed point, depending only on ~xI , no matter what ~x0 is. This is obviously the case if
K is a contraction, but that may be too much to ask for. In [5] global convergence was
established when K is triangular and under the assumptions that all fi’s are differentiable
with continuous derivatives. Later in [3] it was proved that, for a continuous K which
may fail to be differentiable at the points of a linearly denumerable set one has global
convergence of orbits if the norm of the derivative satisfies certain inequalities. Notice
that in [3] K is neither a triangular map nor a contraction. In this paper we do not
assume the differentiability of fi, i = 1, 2, . . . , q at every point and the continuity of the
derivatives and show that with suitable assumptions a map of the form (2) admits a global
attractor. This result is applied to forward neural networks, for which K (see(4)) has the
form (2). It is proved that such systems converge to a fixed point which is independent
of the initial state.

3. Results

Three preliminary lemmas will simplify the proof of our main result. In the first and
second lemma we use a version of the Mean Value Inequality which can be found in [3]
(see also [1], pg. 158). It states that given a continuous function f : [a, b]→ R which is
differentiable except possibly on a denumerable set A, there exists c ∈ [a, b] such that

|f(b) − f(a)| ≤ |f ′(c)|(b− a) (6)

Lemma 1 Let f : R→ R be continuous and differentiable except possibly on a denumer-
able set A. Assume that |f ′(x)| ≤ 1 and there is a point c such that |f ′(c)| < 1. Then for
every x, y such that (x − c)(y − c) < 0 we have |f(x)− f(y)| < |x− y|.

Proof. Clearly |f(x)−f(y)| ≤ |x−y| for every x, y ∈ R (see [3]). Assume that f ′(c) > 0
and consider the function g(x) = x− f(x). Then g is strictly increasing at c i.e., there is
an open interval I, c ∈ I, such that w < c < z, w, z ∈ I implies g(w) < g(c) < g(z). Hence
f(z) − f(w) < z −w. Similarly, setting h(x) = x+ f(x), we obtain f(w)− f(z) < z −w.
Thus |f(z) − f(w)| < z − w = |z −w|. Now, with x < w and z < y, we have

|f(x) − f(w) + f(w) − f(z) + f(z) − f(y)| < |x−w|+ |w − z|+ |z − y| ≤ |x− y|.

2
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Lemma 2 Let f : R→ R be continuous and differentiable except possibly on a denumer-
able set A. Assume that

1. f(0) = 0

2. |f ′(x)| ≤ 1 for all x ∈ Ac.

3. There are two sequences cn and dn such that cn ↑ 0 and dn ↓ 0 and |f ′(cn)| < 1,
|f ′(dn)| < 1.

Then 0 is a global attractor.

Proof. We first show that 0 is the only fixed point of f . Define g(x) = x−f(x). Then
g′(x) ≥ 0 and g is non-decreasing (see [3]). Let a < 0 and assume that g(a) = 0. Notice
that g cannot be constant in [a, 0] since there are points cn ∈ (a, 0) such that g′(cn) > 0.
Hence, there exists r ∈ (a, 0) such that either g(r) < g(a) = 0 or 0 = g(0) < g(r), contra-
dicting the non-decreasing character of g. The proof is similar when a > 0. Consequently,
g(x)x > 0 for every x 6= 0 and 0 is the only fixed point of f .

Next we show that f does not have any periodic orbit of period 2. In fact, assume
that a < b are such that f(a) = b and f(b) = a. Then f has a fixed point in [a, b].
Since the only fixed point of f is x = 0 we must have a < 0 < b. But, by Lemma 1
|f(b) − f(a)| < b− a. Hence, we cannot have f(a) = b and f(b) = a.

Finally, we prove that every orbit converges to 0. From g(x)x > 0 we derive
x0 < x1 = f(x0) when x0 < 0 and x0 > x1 = f(x0) when x0 > 0. Moreover, by
the Mean Value Inequality (see [3]), |x1| = |f(x0) − f(0)| ≤ |x0|. It follows that the
sequence {|xn| : n = 0, 1, . . .} is non-increasing. Thus {|xn| : n = 0, 1, . . .} converges to
some r ≥ 0. The limit set of {xn : n = 0, 1, . . .} is either a singleton, {r} or {−r}, or
it coincides with the set {−r, r}. In the first case r or −r is a fixed point. Hence r = 0
by the first part of this proof. In the second case {−r, r} is a periodic orbit of period 2.
Hence r = 0 by the second part of this proof. 2

Lemma 3 Let f : R → R be continuous. Assume that f has a bounded orbit. Then f
has a fixed point.

Proof. Let O(x0) be bounded. Then L(x0) is non-empty and compact. Moreover, (see
(1)) f(L(x0)) = L(x0). Let z1, z2 ∈ L(x0) be such that z1 ≤ z ≤ z2 for every z ∈ L(x0).
Then f(z1), f(z2) ∈ [z1, z2]. By the Intermediate Value Theorem f has a fixed point in
[z1, z2]. 2
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We are now ready to state and prove the main result of this paper. As a consequence

of Lemma 3 the assumption F (~0) = ~0 can be replaced by the condition that for every
i = 1, 2, ...q the function fi has a bounded orbit when its first i− 1 coordinates remain
fixed.

Theorem 1 Let F : Rq → Rq be continuous and such that

F (~x) = F (x1, x2, . . . , xq) = (f1(x1), f2(x1, x2), . . . , fq(x1, x2, . . . , xq)).

Assume that f1 satisfies the conditions of Lemma 2. Moreover assume that for
i = 2, . . . , q the following conditions hold.

1. fi(0, 0, . . . , 0) = 0.

2. There exist constants ri and subsets Ai ⊂ Ri and Pi = {(x1, x2, . . . , xi) : |xj| ≤
ri for j = 1, 2, . . . , i− 1} such that

(a) Ai ⊂ Pi, and every line ` = {(x1, . . . , xi−1, t) | t ∈ R} ⊂ Pi intersects Ai in at
most a denumerable set of points;

(b)
∣∣∣ ∂fi∂xi

∣∣∣ ≤ 1 in Pi \ Ai and there are sequences cin ↑ 0 and din ↓ 0 such that∣∣∣ ∂fi∂xi
(x1, x2, . . . , cin)

∣∣∣ < 1 and
∣∣∣ ∂fi∂xi

(x1, x2, . . . , din)
∣∣∣ < 1 in Pi \Ai.

Then ~0 is the only fixed point of F and every orbit converges to ~0.

Remark. To clarify condition 2 of the above theorem, suppose A3 ⊂ R3 and P3 =

{(x, y, z) : |x| < r3, |y| < r3}. Then | ∂f3
∂z
| ≤ 1 in P3 \ A3. Moreover, there are two

sequences c3n ↑ 0 and d3n ↓ 0 such that | ∂f3
∂z (x, y, c3n)| < 1 and | ∂f3

∂z (x, y, d3n)| < 1 in

P3 \A3.

Proof. The result is true for q = 1 (see Lemma 2). Assume it true for k = 1, 2, . . . , i−1
and let us show that the same conclusion holds for k = i. By Lemma 2, for every
|xk| ≤ ri

2 , k = 1, 2, . . . , i− 1 we have

|fi(x1, x2, . . . , xi−1, ci1)− fi(x1, x2, . . . , xi−1, 0)| < |ci1|.
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Likewise

|fi(x1, x2, . . . , xi−1, di1) − fi(x1, x2, . . . , xi−1, 0)| < di1.

Since the set |xk| ≤ ri
2
, k = 1, . . . , i − 1, xi = ci1 or xi = di1 is compact, there exists

si > 0 such that

|fi(x1, . . . , xi−1, ci1)− fi(x1, . . . , xi−1, 0)| ≤ |ci1| − si

and

|fi(x1, . . . , xi−1, di1) − fi(x1, . . . , xi−1, 0)| < di1 − si.

It follows that for xi < ci1 and |xk| ≤ ri
2
, k = 1, 2, . . . , i− 1 we have

|fi(x1, . . . , xi−1, xi)− fi(x1, . . . , xi−1, 0)|
≤ |fi(x1, . . . , xi−1, xi)− fi(x1, . . . , xi−1, ci1)|

+|fi(x1, . . . , xi−1, ci1)− fi(x1, . . . , xi−1, 0)|

≤ |xi − ci1|+ |ci1| − si (7)
= ci1 − xi − ci1 − si
= |xi| − si

Similarly for xi > di1 we have

|fi(x1, . . . , xi−1, xi)− fi(x1, . . . , xi−1, 0)| ≤ xi − si (8)

Since fi is continuous there is 0 < δ ≤ ri
2 such that |fi(x1, . . . , xi−1, 0)| ≤ si

2 when-

ever |xk| ≤ δ for k = 1, 2, . . . , i − 1. By the induction argument, we know that the
sequences xjn → 0, j = 1, 2, . . . , i − 1. Hence, without loss of generality, we can as-
sume that |xj0| ≤ δ for every j = 1, 2, . . . , i − 1. Now, let xi0 < ci1. An easy com-

putation, based on the inequalities (7) and (8) shows that |xi1| ≤ |xi0| − si
2

and a

similar result holds if xi0 > di1. Thus, as long as xin < ci1 or xin > di1 we have
|xi,n+1| ≤ |xin| − si

2 . Therefore, the sequence {xin, n = 1, 2, . . .} is bounded and the

set L of its limit points is non-empty and compact. Moreover, an easy adaptation of (1),
together with the property xjn → 0, j = 1, 2, . . . , i− 1, imply that for every z ∈ L we

have that fi(0, 0, . . . , z) ∈ L and there exists w ∈ L such that fi(0, 0, . . . , w) = z. By
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applying Lemma 2 to fi(0, 0, . . . , s) we obtain that every orbit of fi goes to 0. Therefore,
we conclude that L = {0}. 2

4. Application to Forward Neural Networks

Consider the dynamical system (Hopfield Model)

~xn+1 = ~xn − C~xn + TF (~xn) + ~xI

The neuron response function F is frequently of the form F (~x) = (f(x1), . . . , f(xq)) with

f(x) =

 0 x ≤ 0
x 0 ≤ x ≤ 1
1 1 ≤ x

(9)

However in many cases, it may be useful to assume that f is not a continuous function,
for example

f(x) =
{

0 x ≤ a
1 x > a

(10)

where a ∈ [0, 1]. Another possibility could be

f(x) =


0 x ≤ a
x−a
b−a a ≤ x ≤ b
1 b ≤ x.

(11)

It may happen that the neuron response function is different for each neuron. The vec-
tor xI is the input vector and the matrix T is lower triangular (forward network). Hence
the non-zero entries of T are all below the main diagonal. Under these circumstances we
have the following result.

Theorem 2 Let ~xn+1 = (I − C)~xn + TF (~xn) + ~xI be a discrete dynamical system
representing a forward neural network. Assume that ci ∈ (0, 1] for every i = 1, 2, . . . , q.
Then given an initial condition ~x0 the iteration scheme converges to a point ~xs which
depends only on ~xI .
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Proof. Let K(~x) = (I −C)~x+ TF (~x) + ~xI . Notice that under the assumptions of the

theorem we have ∂ki
∂xi

(~x) = 1− ci ∈ [0, 1). Hence, Theorem 1 can be applied whenever the

functions fi, i = 1, . . . , q are either of the form (9) or (11). In the case where at least one
of the functions is of the form (10) we cannot apply Theorem 1 directly since F is not
continuous. However, observe that in the case when all neuron response functions are of
the form (10) we have

x1,(n+1) = k1(x1,n) = (1− c1)x1,n + x1,I.

Consequently, x1,n → x1,I

c1
and f1(x1,n) is eventually a constant k1 (k1 = 0 or k1 = 1).

Now let us look at what is happening to x2,n as n→∞. Notice that for n large enough,

x2,(n+1) = k2(x2,n) = (1− c2)x2,n + k1 + x2I.

It follows that x2,n → (k1 + x2I)/c2. Therefore, also f2(x2,n) is eventually a constant k2.

An induction argument shows that O(~x0) is convergent to a fixed point ~xs which depends
only on ~xI .

When some of the neuron response functions are of the form (10) and the others are
of the form (9) or (11) the proof of the global convergence is obtained by combining the
above strategy with the result established in Theorem 1. 2

The following two examples show that when ti,i 6= 0 for some i = 1, 2, . . . , q then a
neuron response function of type (10) or (11) does not guarantee global convergence to a
unique fixed point.

Example 1 Let

(xn+1, yn+1, zn+1) =

 .7 0 0
0 .4 0
0 0 .4

 (xn, yn, zn)+

 .2 0 0
−.6 .5 0
.2 −.8 .5

 (f(xn), f(yn), f(zn)) + (0, 1, 0)
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where f is as in (10) with a = 0. With initial condition ~x0 = (1, 0, 1) the system

converges to ( 2
3
, 1.5,−1), while with initial condition ~x0 = (0, 0, 1) the system converges

to (0, 2.5,−4
3
).

Example 2 With the same matrices as above, consider the system

(xn+1, yn+1, zn+1) =

 .7 0 0
0 .4 0
0 0 .4

 (xn, yn, zn)+

 .2 0 0
−.6 .5 0
.2 −.8 .5

 (g(xn), g(yn), g(zn)) + (.1, 0, 0)

where

g(x) =

 0 x ≤ .4
5/2(x− .4) .4 ≤ x ≤ .8
1 .8 ≤ x

With initial condition ~x0 = (.1, 0, .1) the system converges to (1/3, 0, 0) while with
~x0 = (1, 1, 1) the system converges to (1,−1, 7/6).

We would like to express our gratitude to the referee for reading our paper so carefully
and pointing out the pauls where changes were needed.
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